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Inhibition of â-secretase (BACE 1) has recently been investigated as a promising therapeutic approach in
the treatment of Alzheimer’s disease, and a growing number of BACE 1 inhibitors and crystal structures of
BACE 1/inhibitors complexes have been reported. We report herein a predictive computational method and
its application to potential BACE 1 inhibitors. Using a training set of 50 known highly flexible inhibitors,
we developed a docking method that accounts for the flexibility of both the protein and the inhibitors.
Protein flexibility is accounted for using a specifically designed genetic algorithm. We next developed a
scoring function consisting of force field evaluation of the inhibitor/protein interactions and two additional
terms for hydrogen bonding and entropy change upon binding. Discarding three outliers from the training
set, our protocol was found to perform well with an rmsd of 1.19 kcal/mol. Evaluation of the predictive
power was next carried out by virtual screening of 80 synthetic compounds. The significant enrichment at
the top of the ranking list in active compounds demonstrated the ability of the docking and scoring protocol
to rank the compounds relative to their activities.

Introduction

BACE 1 (â-secretase, memapsin-2) has recently been identi-
fied as one of the main enzymes involved in the cascade of
physiological events that lead to Alzheimer’s disease (AD).1-4

This aspartic protease cleaves aâ-amyloid precursor protein
(APP) into poorly solubleâ-amyloid, which further aggregates
and deposits in the brain. The prevention of this proteolysis is
therefore a promising therapeutic approach to control the onset
and progression of AD. In a series of seminal papers, Tang and
co-workers5,6 reported on the synthesis of a series of peptidic
inhibitors such as compounds1-3, containing a hydroxyeth-
ylene isostere (Figure 1). These compounds exhibited nanomolar
and subnanomolar activities. The specific interactions of inhibi-
tor 2 with BACE 1, shown in Figure 2, were deduced from the
structure of a complex resolved within 1.9 Å.5 This structural
information has next been used in the design and synthesis of
a series of potent inhibitors by Tang and Ghosh.6 The prepara-
tion of a number of compounds covering a restricted range of
structural classes and efforts directed at the identification of
inhibitors of BACE 1 are now gaining momentum.7-13

BACE 1 is a structurally challenging protein target with
multiple sites for effective binding. Furthermore, the high
homology with other aspartic proteases including cathepsin D,
pepsin, and renin requires the search and development of
selective inhibitors.9 Penetration of the blood-brain barrier is
another consideration of importance for a therapeutically useful
inhibitor. In this regard, many reported compounds with
inhibitory activity in vitro and in cellular assays feature a highly
polar surface, which makes them unsuitable for further develop-
ment as drug candidates. A potential solution to this problem
is to prepare large and diverse libraries of compounds by further
exploring the available X-ray crystallographic data. Alterna-
tively, computer-aided drug design can be a valuable tool for

predicting potentially active compounds and offering a ranking
based on a given set of parameters.

The linear interaction energy (LIE) method14,15 was applied
by Reynolds and co-workers16,17 to a set of 12 compounds as
BACE 1 inhibitors. This study revealed the difficulty of
predicting the binding affinity of inhibitors to BACE 1 (root-
mean-square deviation, rmsd, for predicted free energy of
binding of 1.1 kcal/mol). The main difficulty stems from the
protonation state of both the inhibitors and the protein (five
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Figure 1. Selected inhibitors.

Figure 2. Bioactive conformation of OM99-2/BACE 1 complex (code
PDB: 1FKN).
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arginines and lysines and two aspartic acids in the binding site).
As an example, the protonation state of the two aspartic acids
in the catalytic site is not strictly defined. Recent molecular
dynamics simulation studies favored the protonation of Asp32.18

To achieve potent enzyme inhibition, the inhibitor must
benefit from optimal molecular recognition with the macromo-
lecular biological target structure, a principle that has been the
basis for the development of computational drug design
methods.19-22 Two aspects contribute to the success of structure-
based drug design: the generation of reasonable binding modes
and the highest scoring of those that correspond to the
experimentally observed data. Predicting the correct binding
mode of an inhibitor in an enzyme active site invokes the prior
positioning of the ligand by a search engine that ensures an
efficient and unbiased sampling (conformation/orientation/
translation). This docking problem has been tackled using a
panel of sampling methods that have been recently reviewed.23

The binding mode of interest must next be identified.19,24,25A
variety of scoring functions have been developed including
regression-based empirical functions pioneered by Bo¨hm (LU-
DI)26 or knowledge-based approaches (e.g., DrugScore27,28). To
date, the existing scoring functions rank (to some extent)
compounds according to their biological activities, but their
predictiveness still relies heavily on the target under study.24,29

Although the induced-fit and the conformational ensemble
rationales are now well documented,30 the lock and keyconcept
describing the ligand-receptor binding has been the model
largely exploited by the docking methods. However, this model
does not account for conformational changes upon binding.
When activity is correlated to conformational changes, usual
approaches often generate misleading results.31,32 In addition,
although inhibitors are accurately docked back to their corre-
sponding protein structure (self-docking), docking to other
structures (cross-docking) is usually performed poorly.33,34 To
account for these side chain or backbone adjustments, strategies
have been explored35 that include single docking to conforma-
tional ensembles modeled as a single set of grids,34,36,37docking
to a series of composite structures developed from predefined
libraries of side chain rotamers and a single backbone
conformation,38-41 or sampling and clustering of the side chains
conformations.42 Construction of the protein structure on the
fly using discrete receptor conformations43,44and protein adjust-
ment upon binding using a set of template points to improve
complementarity45 have also been proposed. The more time-
expensive molecular-dynamics-based methods46-49 such as free
energy perturbation were found to be highly accurate but cannot
be applied to combinatorial problems. Other approaches that
use a single conformation include the use of soft Lennard-Jones
potentials50 or pharmacophore-guided docking.51

Herein, we disclose our efforts toward the development of
an oriented induced-fit docking method able to dock and predict
the activity of highly flexible inhibitors of BACE 1. We have
addressed this objective by first developing an accurate flexible
ligand/flexible protein docking method and subsequently by the
creation of a scoring function based on a force field.

Theory and Implementation

A New Genetic Algorithm-Based Docking Method.Prior
to the de novo design and synthesis of novel BACE 1 inhibitors,
we wished to evaluate the reliability of existing automated
docking programs and scoring functions. Initial attempts to dock
the highly flexible inhibitors2 and 3 using fully automated
docking programs including AutoDock 3.0,52,53FlexX,54,55and
DOCK 4.056-58 led to unrealistic binding modes when compared

to the X-ray crystal structures. These failures were attributed
to the large flexibility of the inhibitors (DOCK was recently
successfully used in the docking of a rigid inhibitor)18 and to
the particular shape of the binding site. The S1, S2, and S3
pockets in BACE 1 merge into a large cavity on one side, and
S2′ and S3′ pockets merge into a slightly smaller volume. The
S1′ pocket and the catalytic site constitute a narrow channel,
which links these two large and partly solvent-exposed pockets.
In addition, the key hydrogen bond network between the crucial
hydroxyl group of the hydroxyethylene subunit and the two
catalytic aspartates is quite difficult to predict accurately. We
therefore developed a new genetic algorithm that uses molecular
mechanics to accommodate the docking of flexible inhibitors
into large proteins. This genetic algorithm protocol, detailed in
Methods, allowed us to dock the pseudopeptides2 and3 with
binding modes close to those observed in the crystal structures
of the same Tang inhibitors (Figure 3). To increase the accuracy
and speed of the method, the key hydroxyl group in the
hydroxyethylene isostere subunit was used as an anchor and
was forced into the catalytic site while creating the initial
population and was released for the following evolution.
Directing the docking with the use of an anchor was critical to
the success of this method. Initial attempts to dock compounds
2 and3 without this bias led to inaccurate results or exceedingly
long computation times. The main difference between the
docked and experimentally observed binding modes of these
two inhibitors comes from their terminal residues. The com-
parison of the available crystal structures reveals that these
terminal residues do not make specific interactions with the
binding site residues. Considering that this docking was
performed in vacuo, good binding modes were found with rmsd
values below 3 Å, which were below 2 Å when the two terminal
residues of the inhibitors were not considered. With this

Figure 3. Top: superposition of two representative crystal structures.
Bottom: binding mode of compound2 with BACE 1 modeled using
the developed genetic algorithm (pink) and experimental (orange).
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algorithm in hand, we thought to develop a docking protocol
that would also consider the flexibility of the protein.

Docking to Flexible Proteins.Critical motions of the binding
site residues inducing additional interactions with the inhibitors
were observed (Figure 3). The rmsd values of 0.35-1.0 Å
between the available structures truncated in a manner detailed
in Methods were measured. In fact, these rmsd values essentially
reflect the flexibility of the arginine and lysine side chains found
in the binding site. These motions revealed that an accurate
protocol should account for the induced fit of the binding
site.31,32,35To implement the flexibility of the protein, additional
genes coding the protein binding site conformations were
introduced into the genetic algorithm protocol. One gene codes
the backbone conformation (red in Figure 4), 19 genes code 19
relevant side chains of the binding site residues (in blue in Figure
4), and other genes code each rotatable bonds of the inhibitor.

During the evolution, a two-point crossover approach was
used (Figure 4). The first crossover operator was applied to the
portion of the chromosome corresponding to the ligand (in black
in Figure 4), while a second crossover operator was applied to
the portion corresponding to the protein side chains (in blue in
Figure 4). In practice, a regular two-point crossover operation
would produce only pair 1 in Figure 4. To improve the efficiency
of the evolution, a specific treatment of the junctions between
the three sections (identified as black, blue, and red in Figure
4) of the chromosome was implemented in order to unlink these
three portions. A switch (random number 0 or 1) has been added
at the two junctions and virtually allows exchanges between
the chromosomes at these points. This approach can be defined
as a four-point crossover operation with a floating point on each
section and two points fixed at the junctions. This implemented
method could now potentially lead to the four possible pairs of
children depicted in Figure 4 and to independent treatments of
the protein and of the ligand albeit with a single chromosome.
To further exploit this approach, a crossover rate of 80% was
used. This rate allowed single-point crossover or no crossover
operations to be applied to a fraction of the population while
the other two switching operations were still effective. In these
cases, the parents will simply exchange protein conformation
and/or ligand conformation. Mutations were also applied to the
chromosomes with a user-defined rate of 5%.

To accelerate the evolution, intermediate minimization steps
applied to the ligands were added. This approach is similar to
the Lamarckian genetic algorithm used in AutoDock.53 Initial
attempts using intermediate minimization of the side chain

structures while docking the ligand failed to provide reasonable
protein conformations. The genes coding the protein conforma-
tions were therefore restricted to experimentally observed side
chain and main chain conformations. This approach can be
related to the use of predefined libraries of side chain conforma-
tions and combinatorial construction of protein structures.38-41

However, in the present case, the main-chain flexibility was
also modeled. So far, the main-chain flexibility has only been
modeled with more extensive methods such as molecular
dynamics. More interestingly, the flexibility was modeledwhile
docking the ligand. This technique differs from existing methods
that successively dock the ligands to each composite conforma-
tion.40,41,59,60Furthermore, our approach is not restricted to a
few side chains. One can probably also use predefined libraries
of side chain rotamers in the developed algorithm instead of
experimentally observed conformations, but this approach has
not been tested herein. Obviously, a larger number of input
structures would probably lead to improved accuracy. Of course,
a very large number at the same time creates intractable
computations with the increase of time therefore not recom-
mended for screening libraries.

During the minimization stages, the hydroxyl hydrogens of
the protein were also free to move while the rest of the protein
was fixed. This procedure, also used in GOLD,61 allowed the
optimization of the interactions of the Thr and Tyr hydroxyl
groups with the inhibitor via hydrogen bonds, adding further
flexibility to the protein.

In the present study, six X-ray crystal structures (two
monomeric structures and four structures from two dimers) were
available5,62,63and were used to prepare the initial population.
Thus, each residue side chain can independently adopt six
different conformations, and the same treatment applies to the
backbone. With these conformation sets, the genetic algorithm
protocol now optimizes both the ligand binding mode and the
protein binding site conformation. To increase the speed of the
computations, AMBER united-atom was selected instead of all-
atom force fields. With this approach the CPU time required
for a single docking run ranged from1/2 to 20 h on a standard
workstation, depending on the flexibility of the inhibitor (up to
33 rotatable torsions for compound3). Developments are in
progress in our laboratory to reduce the time required by the
whole protocol by at least 1 order of magnitude.

To assess the accuracy of this approach, inhibitors cocrys-
tallized with the enzyme were first studied. The two highly
flexible inhibitors2 and3 were docked three times. Each run

Figure 4. Chromosomes used for the docking of a flexible inhibitor (nine rotatable bonds) to a flexible protein (nine flexible side chains) and the
two-point crossover operation used. The dotted lines designate the two points of crossover used for illustration.
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led to binding modes and protein conformations highly similar
to the crystal structure, indicating a great convergence of this
protocol. The rmsd between experimental and modeled structure
of BACE 1 when bound to inhibitor2 is 0.18 Å, while the six
initial protein structures have rmsd of 0.35-1.0 Å when
compared to each other. Similarly, when inhibitor3 is docked
to BACE 1, the modeled structure of the protein is very close
to the experimentally observed structure (rmsd) 0.24 Å). The
high convergence observed with such large peptidic inhibitors
demonstrates the great potential of the developed induced-fit
docking method.

RankScore Scoring Function.When docking compounds,
the scoring function should discriminate between conformers
of a single molecule. When ranking compounds, the function
should discriminate between different molecules. While the
desolvation and entropy contributions of two conformers are
similar, the same contributions differ significantly between two
molecules. We therefore hypothesized that a poor description
of the contribution of water and entropy may explain the variable
discrimination of active versus inactive compounds with various
scoring functions.64-66 A careful investigation of both the
desolvation/solvation phenomena and of the entropy change is
needed in order to develop an accurate scoring function. The
proposed hybrid function (eq 1) uses a LUDI-type empirical
evaluation of the entropy change of the ligand, a LUDI-type
empirical evaluation of the hydrogen bonds, and the three terms
used for the LIE method: an evaluation of the electrostatic and
van der Waals interactions based on a force field, and the
solvation contribution to the free energy of binding. This last
term was required to account for the desolvation of highly
charged compounds included in the training set.

In eq 1, the hydrogen bond term appears virtually twice because
most of the force fields implicitly consider hydrogen bond
interactions as electrostatic in nature. However, the docking to
flexible BACE 1 was carried out with the AMBER9467,68force
field, which treats electrostatic interactions and hydrogen bonds
separately.

LUDI evaluates the hydrogen bond strength as varying
linearly as a function of theR (e.g., O‚‚‚H-N, ideally 180°)
and â (e.g., CdO‚‚‚H, ideally 120°) angles and the length.26

The hydrogen bond contribution in our scoring function was
evaluated using a similar approach. Because the docking process
relied on a force field evaluation of the binding mode, we
thought that including theâ angle (which is not optimized during
this process) would not be appropriate and therefore used only
the R angle. LUDI scoring function accounts for the comple-
mentarity of shape by evaluating the contact surface, whereas
force fields compute the van der Waals contribution for long-
range interaction.26 Our scoring function takes into account an
intermediate treatment of this contribution by calculating van
der Waals interactions only with binding site residues. The
choice of such short-range interactions was dictated by the
higher predictiveness of the force field scoring when only
residues in proximity were considered (Table 1, entries 11 and
14). To the hydrogen bond and van der Waals terms were added
the Coulombic interactions evaluated by the force field.

When one deals with compounds exhibiting a large range of
lipophilicities, the contribution of desolvation to the binding is
critical. In addition, to evaluate the whole binding process (as

does LIE), the initial state in water and the final state (ligand
bound to the protein) should be considered. Thus, the solvation
difference between the final state (complex solvation energy)
and the initial state (ligand and protein solvation energies) was
computed. Six solvation models, which include methods based
on atomic parameters69 or on solvent accessible surface area or
employ a more accurate calculation of the polar contribution
using a finite difference of the nonlinear Poisson-Boltzmann
equation, were evaluated. Surprisingly, none of these methods
were found to significantly improve the accuracy of the function
(see Results and Discussion). The solvation contribution was
therefore removed for this work even though preliminary
assessment of the transferability of this scoring function revealed
that this contribution significantly improves the accuracy when
looking at other enzymes.

Although a number of empirical scoring functions explicitly
include an entropy penalty for each frozen bond of the ligand,
only a few account for the protein entropy, which is currently
assumed to be constant regardless of the ligand.70 The force-
field-based scoring functions also lack a term for the entropy
contribution to binding. The intrinsic consideration of the
entropy in some empirical scoring functions (e.g., PLP2 and
LigScore2) may explain their greater ability in ranking com-
pounds (vide infra). The entropy term due to the freezing of
torsions used here was similar to the one proposed in the LUDI-
type scoring functions. The binding site of BACE 1 features
five highly flexible residues (Arg128, Arg235, Arg307, Lys224,
Lys321). Lysine and arginine side chains have been shown to
be the two most flexible side chains in proteins.71 In addition,
the selected training set contains inhibitors of different lengths
that are expected to interact with a different number of residues
within the binding site. The mobility of these residues is
therefore modulated by the ligands. As the binding enthalpy
increases, the mobility of the protein decreases, resulting in a
greater decrease in entropy.72 Thus, the tighter a ligand is bound,
the more frozen the side chains will be. This is indeed one of
the more common explanations of the enthalpy-entropy
compensation in proteins.72 To account for this phenomenon,
the interactions (van der Waals, electrostatic, and hydrogen
bonding) with the side chains were scaled. The scaling pattern
is related to the flexibility of the side chains. The interactions
with the backbone and the catalytic aspartic acids were not
scaled.

∆Gbinding ) ∆G0 + 0.14NROT +

∑(scale factor)[(0.26UvdW
inh-prot + 0.035Uelec

inh-prot +
0.80fhb(∆r,∆R)] (1)

Table 1. Spearman Coefficients for the Ranking of the Training Set

entry scoring function
rigid protein

docking
flexible

protein docking

1 PLP2 0.75 0.64
2 PLP1 0.68 0.62
3 LUDI 0.47 0.37
4 PMF 0.21 0.29
5 D-Score 0.04 0.61
6 G-Score 0.29 0.20
7 Chem-Score 0.20 0.17
8 LigScore2 0.71 0.47
9 LigScore1 0.41 0.06

10 force fielda 0.48c 0.51d

11 force field, vdWa 0.36c 0.54d

12 force field, eleca 0.39c 0.41d

13 force fieldb 0.55c 0.57d

14 force field, vdWb 0.45c 0.69d

15 force field, elecb 0.42c 0.40d

16 RankScore (this work) 0.68 0.80

a Intermolecular interaction; cutoff) 15 Å. b Intermolecular interaction
with the binding site residues only (with at least one atom within 5 Å from
the ligand).c CFF91.d AMBER94.
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Results and Discussion

Induced-Fit Docking. In this work, the enzyme/inhibitor
complex is coded as a chromosome and optimized by means
of a genetic algorithm. One part of the chromosome codes the
binding mode of the ligand, and the second part codes the
backbone and side chain conformations of the protein. Each
torsion of the ligand is coded with one gene, and each entire
side chain or entire backbone of the protein is coded with one
gene. We considered a library of conformations restricted to
the experimentally observed conformations of the protein. Initial
work with more flexible side chains led to inconsistent protein
conformations. Full optimization of the side chain conformations
would in fact require the study of solvated complexes. Although
in this case study only six starting structures were used, a more
complete set of structures can be developed from routine
molecular dynamics simulations or obtained from NMR studies.
As revealed later, the accuracy of the docking protocol and of
the developed scoring function was enhanced when the protein
flexibility was considered. These results, which stem from the
optimized shape complementarity of both partners when the
protein is allowed to move, are consistent with observations
from other groups.31-45

A training set of 50 highly diverse compounds exhibiting from
subnanomolar to no activity was selected. Application of the
induced-fit docking method led to 50 modeled complexes. A
close look at these structures reveals that the 50 compounds
are bound with similar orientations and conformations. However,
a simple positioning by analogy with crystallized inhibitors and
minimization would not be able to optimize the binding mode
of compounds such as42, 45, and 50 (Table A, Supporting
Information). The similarity of the binding modes is additional
proof of the high convergence of the method. It is worth
mentioning that all these docked compounds are highly flexible
and that flexibility has been, to date, an obstacle to accurate
docking methods. In addition, 19 side chains and the backbone
of the protein were also considered as flexible.

Existing Scoring Functions. Most of the existing scoring
functions attempt to approximate the free energy of binding and
rely on additive effects.24 To evaluate the predictive power of
some available scoring functions, a training set of 50 known
inhibitors (22 charged and 28 neutral inhibitors described in
the Supporting Information), which cover a large cross section
of biological activities (subnanomolar to micromolar and even
inactive), was used. This set was selected with an emphasis on
chemical diversity, although the reported structures are built
around similar scaffolds. The four compounds that were reported
as inactive were arbitrarily attributed the value of 1 000 000
nM. This allowed us to calculate a binding free energy for these
inactive compounds. Using other arbitrarily assigned values did
not significantly affect the predictive power of the developed
scoring function. Compounds in this training set were alterna-
tively docked in the rigid and flexible protein and were scored
using nine available scoring functions (LUDI,26 PLP1,73 PLP2,74

PMF,75 LigScore1,76 LigScore2,76 D-Score,56 G-Score,61 and
ChemScore77) and two force fields (CFF91 and AMBER9467,68).
During the course of our work, Wang et al.64 reported the use
of the Spearman coefficient as a tool for evaluating the ability
of the scoring functions to rank the compounds. For the sake
of comparison, this coefficient was also used in this work, and
the results correlate well with the data provided by Wang and
co-workers. A coefficient of 1 indicates a perfect ranking of
the compounds, while a coefficient of 0 indicates a random
ranking of compounds. Table 1 summarizes the ranking of the

docked conformations of the training set by known scoring
functions as well as by RankScore.

Thus, for each scoring function, the entire training set of 50
compounds was analyzed and ranked accordingly. For the rigid
docking study, PLP2 and LigScore2 appeared as the most
accurate scoring functions with Spearman coefficients above
0.7. A more in-depth study of each scoring function pointed
out the importance of hydrogen bonds (as calculated by LUDI)
and van der Waals interaction (as evaluated by force fields).
These observations were further exploited in the development
of a new scoring function (see below). It is not clear to us why
the LigScore1 and LigScore2 performance was so affected by
the incorporation of the flexibility and why D-Score benefited
so greatly from the flexibility of the protein. Nevertheless, the
performance of the other scoring functions was about the same
with either the rigid or the flexible protein.

The great performance of AMBER scoring and PLP2 is in
good agreement with the work from Charifson et al.78 However,
they have also found ChemScore to be accurate.78 The need
for a highly predictive scoring function prompted us to develop
a more detailed protocol for ranking the relative binding affinity
of sets of potential inhibitors.

RankScore Scoring Function.To date, most of the reported
scoring functions accurately guide the docking of compounds
by identifying the experimentally observed binding mode among
a large number of different poses. However, they perform poorly
when trying to discriminate between a series of active and
inactive compounds.29,64-66,79A recent comparative study of 11
scoring functions confirmed this limitation.64 When applied to
the docking of inhibitors to BACE 1, the empirical scoring
function PLP2 and LigScore2 performed well with a good
ranking ability while other functions poorly ranked the com-
pounds.

With the objective of securing a more discriminating protocol,
we developed our own scoring function (RankScore) focusing
on the loss of entropy and on the water effect upon binding as
presented in Theory and Implementation. A multiple linear
regression was carried out to assign the weights to each
contribution, and rmsd values of 2.14 and 1.59 kcal/mol were
obtained for the docking to rigid and flexible proteins, respec-
tively. The mathematical basis for RankScore is shown in eq
1. Interestingly, the weights associated with the van der Waals
(0.260) and electrostatic (0.035) terms are very similar to those
developed by Reynolds and co-workers (LIE study, 0.204-
0.239 and 0.014-0.060).16,17This correlation indicates that the
scoring of the single docked conformation is a good approxima-
tion of the scoring of a larger sampling of structures obtained
from molecular dynamics (MD) simulations. This also demon-
strates that the docking protocol developed in this work is
accurate given the time needed to dock a compound (hours)
compared to the time needed for an LIE study (days). While
this manuscript was in preparation, a similar approach was
successfully applied by Huang and Caflish to BACE 1 and HIV
1 protease.80 They combined energy minimization and accurate
solvation estimation to develop predictive equations (rmsd of
about 1.0 kcal/mol). In this case, the weight attributed to the
van der Waals contribution (0.2737) to the free energy of
binding was similar to ours, while the electrostatic was assigned
a higher weight (0.1795) than in this work. Addition of an
entropy contribution slightly increased the accuracy.

We next optimized the scaling factors to model the entropy
cost associated with the side chain freezing. The values were
1.00 for the backbone, 0.80 for flexible side chains, or 0.60 for
Arg and Lys side chains. This is an indication of the role of the
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entropy associated with the side chain mobility. This may also
partly account for the desolvation of the charged residues.

The weights attributed by linear regression analysis to each
term of RankScore can be related to experimental values.25 For
instance, an energy of 0.80 kcal/mol was attributed to an ideal
hydrogen bond. This value is in good agreement with the
reported experimental values (1.1 kcal/mol).81 Similarly, a
contribution of 2 kcal/mol for a salt bridge is calculated by the
developed function and found to be in good agreement with
the literature (2-5 kcal/mol).25 The freezing of a bond upon
binding was found to increase the Gibbs energy by 0.14 kcal/
mol, a value that is lower than that of LUDI and AutoDock
scoring functions (0.33 and 0.31 kcal/mol, respectively). The
remaining constant (∆G0) represents the rigid-body entropy loss
associated with the rotational and translational restrictions
imposed on the bound ligand and enzyme desolvation. This latter
contribution can be considered as roughly constant from one
system to another.

The use of scaling factors to model the entropy cost greatly
enhanced the accuracy of the RankScore scoring function. Thus,
the developed protocol includes the protein flexibility and the
evaluation of the entropy loss upon binding to an inhibitor.
When these scaling factors were removed, linear regression led
to weights with no physical meanings; the weight attributed to
the electrostatic contribution was negative. An rmsd of 1.74
kcal/mol was calculated when no scaling was employed, and a
weight of zero was assigned to the electrostatic contribution.
These last results validated our assumption that the entropy loss
of the macromolecule should be appropriately estimated. This
also confirmed that the poor ability of the available scoring
functions to rank compounds may be related to the oversim-
plification of this term.

A low weight was initially attributed to the solvation
contribution; however, the role it played was not significant.
This last result is quite unexpected when considering the large
variety of polar and nonpolar compounds in the training set. A
recent study on BACE 1 from Reynolds and co-workers17 led
to a similar conclusion. In the meantime, Brooks and co-
workers66 have investigated the role of the generalized Born
and the Poisson continuum models in combination with a force
field (CHARMm). This force-field-based scoring showed ac-
curacy close to that obtained with available scoring functions.
In the present work, scaling down the electrostatic and van der
Waals contributions and scaling down the interactions with
lysine and arginine side chains seem to account for the
desolvation/solvation process.

As a result, the Spearman coefficient for RankScore (Table
2, entry 16) is now higher than those computed for other
available scoring functions. The quality of the final scoring
function was illustrated by an rmsd of 1.59 kcal/mol and anr2

value of 0.624 (Figure 5). Removing the three major outliers
(∆G(obsd)- ∆G(pred)> 3 kcal/mol) led to an rmsd of 1.19
kcal/mol and anr2 value of 0.789. The CPU-intensive but more
accurate LIE procedure as applied by Reynolds and co-workers
led to an optimized rmsd of 1.10 kcal/mol (12 compounds) and
an optimized rmsd of 0.87 kcal/mol when the two charged
compounds were removed. The more similar LIE approach used
by Huang and Caflish demonstrated a better rmsd of 1.0 kcal/
mol.80 However, the large training set used in the present work
gathers compounds from different sources and SAR data were
collected using different biological assay conditions. The
theoretical error (rmsd< 2 kcal/mol) is therefore believed to
be within a reasonable range. The three outliers are12 (pred,
61 µM; obsd, 0.04µM), 27 (pred, 0.9µM; obsd, 1400µm),

and32 (pred, 15µM; obsd, 15 000µM) listed in the Supporting
Information. Visual inspection of docked compound32 revealed
that the phenyl ring was not well tolerated (not flat) by the
enzyme. The lack of a term evaluating the ligand strain in the
developed scoring function may explain this failure. Compounds
12 and 27 feature nitrogen-containing heterocycles. The pro-
tonation state of these groups is strongly influenced by the local
pKa of the binding site, and local proton exchange between the
protein and the inhibitor may occur upon binding. However, a
standard docking procedure cannot account for such a phenom-
enon.

Ranking of a Validation Set. An ideal computational tool
in virtual screening would extract the most active compounds
from a large and diverse library, and the best protocol would
assign high ranking to these active compounds. To evaluate the
performance of the developed RankScore protocol, a validation
set of 80 peptidomimetics and pseudopeptides developed in our
laboratory was selected.63,82,83Most of these 80 compounds are
similar to the compounds found in the training set, although
they feature nonpeptidic moieties such as cyclopentanes.63 One-
eighth of the selected library exhibit IC50 values below 500 nM
(Figure 6). Thus, the selected compounds were docked, scored,
and ranked using RankScore. For the sake of comparison, the
same docked structures were ranked with PLP2 and LigScore2,
which were found to be the two best scoring functions
(Spearman coefficients for the training set of 0.64-0.75 and
0.47-0.71, respectively). Once the molecules were ranked, the
performances of the different scoring functions were compared.
Unfortunately, the available biological data were not sufficient
to compute a correlation factor. These data included IC50 values
only for the most active compounds and not for compounds
with inhibitory activity lower than 50% at 10µM. In Figure 6,
we compare histograms representing the composition of the
initial library (random ranking) to ranked lists with RankScore,
PLP2, and LigScore2. It is clear that the top of the ranking lists
for RankScore and PLP2 is enriched in actives relative to the
random ranking list. It also appears that LigScore2 poorly
discriminates actives and inactives within this validation set. A
focused library extracted from a LigScore2 ranking list would
have nearly the same composition as a random library. This
failure is striking when considering the good prediction of
LigScore2 for the training set.

Several reasons can explain the weaker prediction of Rank-
Score for two of the good binders in the validation set. First,

Figure 5. Predicted binding energies vs observed binding energies
for the training set. Dotted lines delineate errors of 1 order of magnitude
for the Ki values.
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the docking was performed in a vacuum, while water molecules
can have an active role to play in the binding. Second, the
scoring might have been computed on poorly docked com-
pounds. Third, the initial set of six structures of the protein may
not cover the conformational space properly. This last issue can
easily be addressed using molecular dynamics simulations or
NMR structures. An additional experimental error can be
attributed to the use of IC50 values whereas the binding energies
predicted for the training set were correlated toKi values. It is
also worth mentioning that the RankScore scoring function was
developed for this particular enzyme and that it was developed
from docked and not experimentally observed structures.

From a practical point of view, if one had screened the
validation set prior to synthesis and biological assays and had
synthesized only the top 15 molecules, one would have made 8
(PLP2) or 9 (RankScore) of the 11 highly active compounds
(IC50 below 500 nM) (Chart 1). Overall, the timeline for the
discovery of new active entities would have been significantly
reduced. In addition, RankScore ranked the 11 highly active
structures in the top 33, while two compounds ranked 48 and
55 with PLP2. In Chart 1, we show the protocol used and the
number of actives predicted. When a desolvation/solvation term
was included, the 11 highly active structures were found in the
top 27.

Conclusion

A docking method was first developed that properly docked
the highly flexible inhibitors contained in the training set. Next,

an extended version of this method that accounts for protein fit
upon binding was developed and showed improved efficiency.
The method is based on a genetic algorithm where chromosomes
code the entire complex. Genes code the ligand conformation,
while other genes code the protein conformation. The modeling
of both the side chains and the main chain conformations while
inhibitors are being docked is unique and easy to implement.
The docking data clearly indicate that the oriented docking
approach effectively accounts for the large flexibility of the
inhibitors (up to 33 rotatable bonds for compound3) and for
adjustments in the protein structure. The docking method has
also been found to be highly convergent (three runs with the
most flexible inhibitors led to similar binding modes and scores)
although costly in time.

A force-field-based scoring function for BACE 1 (Rank-
Score), which accounts for the protein entropy loss, ligand
desolvation, and complex solvation, was next developed and
demonstrated a great ability to discriminate between active and
inactive compounds. Accounting for the entropy loss of the
protein using a scaling pattern applying to flexible binding site
side chains significantly enhanced the accuracy of the function.
The predictive power of RankScore was compared to that of
LigScore2 and PLP2. In fact, RankScore was able to discrimi-
nate compounds with similar structures but different biological
activities, while the ranking of this validation set with PLP2
was less accurate. The ability to rank docked structures also
demonstrates the appropriate binding modes proposed by the
docking procedure.

The capacity of the approach described herein to discriminate
actives and inactives has great potential for the future design
of peptidic and pseudopeptidic BACE 1 inhibitors. The exten-
sion of this protocol to other enzymes and the evaluation of the
transferability of RankScore are underway.

Methods

General. The developed protocol was fully interfaced within
InsightII from Accelrys Inc.85 using BCL code, awk, and perl
scripts.86 Standard force field (AMBER94) atom partial charges

Figure 6. Distribution of (a) randomly generated library, (b) library
scored/ranked with RankScore, (c) library scored/ranked with Lig-
Score2, (d) library scored/ranked with PLP2.

Chart 1. Flow Chart of the Protocol Used for the Validation of
the Developed Docking/Scoring Method
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were assigned to the protein, while the ligand charges were
computed using semiempirical calculations with MNDO. Missing
parameters (e.g., sulfonamide) were obtained from the Amber* force
field implemented in MacroModel software.87 Graphical displays
were printed from the Maestro molecular modeling system.88 Scores
with LigScore1, LigScore2, PLP1, and PLP2 were obtained using
Cerius 2 software programs.89 Scores with PMF, D_Score, G_Score,
and Chem_Score were obtained using CScore standalone from
Tripos Inc.90 This protocol includes an additional minimization
using the Tripos force field.

Starting Enzyme Structure. The X-ray structure of inhibitor/
BACE 1 complexes were retrieved from the Brookhaven Protein
Data Bank (PDB codes 1FKN, 1M4H, 1YM4) and from a patent91

and used as a starting point. The hydrogen atoms were added, the
energy was minimized, and the result was visually inspected. The
inhibitors and water molecules were removed from the obtained
complexes. To reduce the computational time, the enzyme structures
were next truncated for the docking study. Truncation was achieved
by keeping residues with at least one atom within 15 Å from the
OM99-2 structure in the relaxed complex. Geometric considerations
led us to protonate Asp32 and deprotonate Asp128. The protonation
state of the enzyme has been investigated by different groups.
However, the different studies led to opposite conclusions.18,92,93

Genetic Algorithm-Based Docking Method.The algorithm was
written using BTCL code as implemented under Discover 3.0 and
is as follows:94 (1) Create the initial population (300 individuals in
this work) by randomly rotating all the rotatable bonds of the
inhibitor with the hydroxyl group positioned near the two catalytic
aspartates followed by relaxation of the inhibitors by quick
minimization; keep those with potential energy of less than a user-
defined value (3000 kcal/mol). The initial population was con-
structed using six X-ray structures for the protein. (2) Begin a user-
defined number of genetic operations (population usually converges
within 100-200 generations). (2.1) Select two parents within the
300 individuals. (2.2) Produce two children by the developed two-
point crossover (one point for the ligand and one point for the
protein). (2.3) Apply mutation with a user-defined rate (0.05 in
this work). (2.4) In a user-defined fraction of the population (0.25
in this study), optimize the solution (local search) by a user-defined
number of steps of conjugate gradient energy minimization (250
in this work) with a convergence criterion of 0.001 kcal/mol. During
this minimization stage, the Thr, Ser, and Tyr hydroxyl hydrogens
are free to move while the rest of the protein is fixed. (2.5) Replace
in a steady-state mode the least fit parent if the child’s fit is better
(potential energy is lower). (2.6) Reiterate the process until
convergence is obtained.

The docking fitness function was a simple force field energy
evaluation with a scaled (0.5) Coulombic term and a distance-
dependent dielectric constant (ε ) 4r) to account for the desolvation
and the solvent shielding, respectively. This electrostatic scaling
was indeed found to significantly improve the efficiency of the
docking method. The following side chains were considered as
flexible: Gln12, Leu30, Asp32, Tyr71, Thr72, Gln73, Phe108,
Ile110, Ile118, Ile126, Arg128, Tyr198, Lys224, Asp228, Thr231,
Thr232, Arg235, Arg307, Lys321. Each of these side chains was
coded as a gene, while the rest of the protein (backbone and other
side chains) was coded in a single gene.

Scoring Function.The resulting docked structures were further
optimized by conjugate gradient energy minimization with a
convergence criterion of 0.001 kcal/mol and scored using the
RankScore scoring function. This function includes (1) the van der
Waals and Coulombic interactions of the complex measured using
AMBER94, (2) the hydrogen bond profile of the complex using
scripts that read the coordinate files, (3) an extra term that can also
be included, which is the solvation free energy of binding calculated
using DELPHI module (Insight II Users’ Guide) by computation
of the complex and the ligand solvation energies. AWK and perl
scripts combine all these values into a final score.85
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