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Inhibition of g-secretase (BACE 1) has recently been investigated as a promising therapeutic approach in
the treatment of Alzheimer’s disease, and a growing number of BACE 1 inhibitors and crystal structures of
BACE 1/inhibitors complexes have been reported. We report herein a predictive computational method and
its application to potential BACE 1 inhibitors. Using a training set of 50 known highly flexible inhibitors,
we developed a docking method that accounts for the flexibility of both the protein and the inhibitors.
Protein flexibility is accounted for using a specifically designed genetic algorithm. We next developed a
scoring function consisting of force field evaluation of the inhibitor/protein interactions and two additional
terms for hydrogen bonding and entropy change upon binding. Discarding three outliers from the training
set, our protocol was found to perform well with an rmsd of 1.19 kcal/mol. Evaluation of the predictive
power was next carried out by virtual screening of 80 synthetic compounds. The significant enrichment at
the top of the ranking list in active compounds demonstrated the ability of the docking and scoring protocol
to rank the compounds relative to their activities.

Introduction H OH H
_ ) ) +N N._, 1, IC50 = 36-68 nM

BACE 1 (5-secretase, memapsin-2) has recently been identi- R Vl\)\lf R 2,ICs0 = 1.5-9.6 nM
fied as one of the main enzymes involved in the cascade of >~ o 3, ICs0 = 0.31 nM
physiological events that lead to Alzheimer’s disease (AD).
This aspartic protease cleaveg3amyloid precursor protein 1,0M99-1, R' = H-Val-Asn-, R = -Ala-Glu-Phe-OH
(APP) into poorly solublgg-amyloid, which further aggregates 2. OM99-2, R' = H-Glu-Val-Asn-, R? = -Ala-Glu-Phe-OH
and deposits in the brain. The prevention of this proteolysis is 3, OM00-3, R' = H-Glu-Val-Asp-, R? = -Val-Glu-Phe-OH

therefore a promising therapeutic approach to control the onselrigure 1. Selected inhibitors.
and progression of AD. In a series of seminal papers, Tang and

co-worker§6 reported on the synthesis of a series of peptidic Arg235
inhibitors such as compounds-3, containing a hydroxyeth-
ylene isostere (Figure 1). These compounds exhibited nanomolar Thr
and subnanomolar activities. The specific interactions of inhibi-
tor 2 with BACE 1, shown in Figure 2, were deduced from the
structure of a complex resolved within 1.9°AThis structural
information has next been used in the design and synthesis of
a series of potent inhibitors by Tang and Ghédrthe prepara-

tion of a number of compounds covering a restricted range of Hzﬁu
structural classes and efforts directed at the identification of H
inhibitors of BACE 1 are now gaining momentuimt3
BACE 1 is a structurally challenging protein target with o
multiple sites for effective binding. Furthermore, the high P
homology with other aspartic proteases including cathepsin D, P .},1;
pepsin, and renin requires the search and development of
selective inhibitor$. Penetration of the blooebrain barrier is Asp32  Asp228
another consideration of importance for a therapeutically useful _. N .
inhibitor. In this regard, many reported compounds with E'Slér:elzl':f,\'f))écwe conformation of OM99-2/BACE 1 complex (code

inhibitory activity in vitro and in cellular assays feature a highly
polar surface, which makes them unsuitable for further develop-
ment as drug candidates. A potential solution to this problem
is to prepare large and diverse libraries of compounds by further
exploring the available X-ray crystallographic data. Alterna-
tively, computer-aided drug design can be a valuable tool for

predicting potentially active compounds and offering a ranking
based on a given set of parameters.
The linear interaction energy (LIE) methidd®>was applied
by Reynolds and co-workéfs!”to a set of 12 compounds as
BACE 1 inhibitors. This study revealed the difficulty of
predicting the binding affinity of inhibitors to BACE 1 (root-
o S e et o, *143%% 8543 mean-square deviation, rmsd, for predicted free energy of
 McGill University. binding of 1.1 kcal/mol). The main difficulty stems from the
* Universitede Montrel. protonation state of both the inhibitors and the protein (five
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arginines and lysines and two aspartic acids in the binding site). §

As an example, the protonation state of the two aspartic acids
in the catalytic site is not strictly defined. Recent molecular
dynamics simulation studies favored the protonation of AS§32.
To achieve potent enzyme inhibition, the inhibitor must
benefit from optimal molecular recognition with the macromo-
lecular biological target structure, a principle that has been the
basis for the development of computational drug design
methodst®~22 Two aspects contribute to the success of structure-
based drug design: the generation of reasonable binding mode
and the highest scoring of those that correspond to the

experimentally observed data. Predicting the correct binding %

mode of an inhibitor in an enzyme active site invokes the prior
positioning of the ligand by a search engine that ensures an
efficient and unbiased sampling (conformation/orientation/
translation). This docking problem has been tackled using a
panel of sampling methods that have been recently reviéied.
The binding mode of interest must next be identifl@éd*25A
variety of scoring functions have been developed including
regression-based empirical functions pioneered byrB¢LU-
DI)26 or knowledge-based approaches (e.g., DrugSééie To
date, the existing scoring functions rank (to some extent)
compounds according to their biological activities, but their
predictiveness still relies heavily on the target under stdd§.
Although the induced-fit and the conformational ensemble
rationales are now well document&thelock and keyconcept
describing the ligandreceptor binding has been the model
largely exploited by the docking methods. However, this model
does not account for conformational changes upon binding.
When activity is correlated to conformational changes, usual
approaches often generate misleading restifsln addition,
although inhibitors are accurately docked back to their corre-
sponding protein structure (self-docking), docking to other
structures (cross-docking) is usually performed poétfit.To

account for these side chain or backbone adjustments, strategie

have been exploréelthat include single docking to conforma-
tional ensembles modeled as a single set of gfids%’docking

to a series of composite structures developed from predefined

libraries of side chain rotamers and a single backbone
conformation?®-41 or sampling and clustering of the side chains
conformations’? Construction of the protein structure on the
fly using discrete receptor conformatidfié*and protein adjust-
ment upon binding using a set of template points to improve
complementarit? have also been proposed. The more time-
expensive molecular-dynamics-based metffod$such as free
energy perturbation were found to be highly accurate but cannot
be applied to combinatorial problems. Other approaches that

use a single conformation include the use of soft Lennard-Jones

potential§8® or pharmacophore-guided dockipfy.

Herein, we disclose our efforts toward the development of
an oriented induced-fit docking method able to dock and predict
the activity of highly flexible inhibitors of BACE 1. We have
addressed this objective by first developing an accurate flexible
ligand/flexible protein docking method and subsequently by the
creation of a scoring function based on a force field.

Theory and Implementation
A New Genetic Algorithm-Based Docking Method.Prior

Moitessier et al.
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Figure 3. Top: superposition of two representative crystal structures.
Bottom: binding mode of compouri2lwith BACE 1 modeled using
the developed genetic algorithm (pink) and experimental (orange).

to the X-ray crystal structures. These failures were attributed
to the large flexibility of the inhibitors (DOCK was recently

uccessfully used in the docking of a rigid inhibitdrand to

e particular shape of the binding site. The S, and S
pockets in BACE 1 merge into a large cavity on one side, and
S, and ' pockets merge into a slightly smaller volume. The
S, pocket and the catalytic site constitute a narrow channel,
which links these two large and partly solvent-exposed pockets.
In addition, the key hydrogen bond network between the crucial
hydroxyl group of the hydroxyethylene subunit and the two
catalytic aspartates is quite difficult to predict accurately. We
therefore developed a new genetic algorithm that uses molecular
mechanics to accommodate the docking of flexible inhibitors
into large proteins. This genetic algorithm protocol, detailed in
Methods, allowed us to dock the pseudopeptidlesd3 with
binding modes close to those observed in the crystal structures
of the same Tang inhibitors (Figure 3). To increase the accuracy
and speed of the method, the key hydroxyl group in the
hydroxyethylene isostere subunit was used as an anchor and
was forced into the catalytic site while creating the initial
population and was released for the following evolution.
Directing the docking with the use of an anchor was critical to
the success of this method. Initial attempts to dock compounds
2 and3 without this bias led to inaccurate results or exceedingly
long computation times. The main difference between the
docked and experimentally observed binding modes of these
two inhibitors comes from their terminal residues. The com-

to the de novo design and synthesis of novel BACE 1 inhibitors, parison of the available crystal structures reveals that these
we wished to evaluate the reliability of existing automated terminal residues do not make specific interactions with the
docking programs and scoring functions. Initial attempts to dock binding site residues. Considering that this docking was

the highly flexible inhibitors2 and 3 using fully automated
docking programs including AutoDock 3°853FlexX 5455and
DOCK 4.0%58|ed to unrealistic binding modes when compared

performed in vacuo, good binding modes were found with rmsd
values below 3 A, which were belo2 A when the two terminal
residues of the inhibitors were not considered. With this



Induced-Fit Docking Journal of Medicinal Chemistry, 2006, Vol. 49, No. 3887

Parents Children

Backbone_ .
conformation |
|

Side-chain 1
Side-chain 2
Side-chain 3
Side-chain 4
Side-chain 5
Side-chain &
Side-chain 7
Side-chain 8
Side-chain 9

crossover
ﬂ

Dihedral angle 1
Dihedral angle 2
Dihedral angle 3
Dihedral angle 4
Dihedral angle 5
Dihedral angle 6
Dihedral angle 7
Dihedral angle 8
Dihedral angle 9

-HH-HA-H—-HAHH-H—-

-
-

-HH-HH-H—HAHH-H—-

A HA = — -
~HHHHHHAH— T
A
A H =

-

1 2 3 4

Figure 4. Chromosomes used for the docking of a flexible inhibitor (nine rotatable bonds) to a flexible protein (nine flexible side chains) and the
two-point crossover operation used. The dotted lines designate the two points of crossover used for illustration.

algorithm in hand, we thought to develop a docking protocol structures while docking the ligand failed to provide reasonable
that would also consider the flexibility of the protein. protein conformations. The genes coding the protein conforma-
Docking to Flexible Proteins.Critical motions of the binding tions were therefore restricted to experimentally observed side
site residues inducing additional interactions with the inhibitors chain and main chain conformations. This approach can be
were observed (Figure 3). The rmsd values of 6:3® A related to the use of predefined libraries of side chain conforma-
between the available structures truncated in a manner detailedions and combinatorial construction of protein structifes!
in Methods were measured. In fact, these rmsd values essentiallHowever, in the present case, the main-chain flexibility was
reflect the flexibility of the arginine and lysine side chains found also modeled. So far, the main-chain flexibility has only been
in the binding site. These motions revealed that an accuratemodeled with more extensive methods such as molecular
protocol should account for the induced fit of the binding dynamics. More interestingly, the flexibility was modeletile
site31:32.35T o implement the flexibility of the protein, additional  docking the ligand. This technique differs from existing methods
genes coding the protein binding site conformations were that successively dock the ligands to each composite conforma-
introduced into the genetic algorithm protocol. One gene codes tion#%:41.59.60Fyrthermore, our approach is not restricted to a
the backbone conformation (red in Figure 4), 19 genes code 19few side chains. One can probably also use predefined libraries
relevant side chains of the binding site residues (in blue in Figure of side chain rotamers in the developed algorithm instead of
4), and other genes code each rotatable bonds of the inhibitor.experimentally observed conformations, but this approach has
During the evolution, a two-point crossover approach was not been tested herein. Obviously, a larger number of input
used (Figure 4). The first crossover operator was applied to the structures would probably lead to improved accuracy. Of course,
portion of the chromosome corresponding to the ligand (in black a very large number at the same time creates intractable
in Figure 4), while a second crossover operator was applied to computations with the increase of time therefore not recom-
the portion corresponding to the protein side chains (in blue in mended for screening libraries.
Figure 4). In practice, a regular two-point crossover operation  During the minimization stages, the hydroxyl hydrogens of
would produce only pair 1 in Figure 4. To improve the efficiency the protein were also free to move while the rest of the protein
of the evolution, a specific treatment of the junctions between was fixed. This procedure, also used in GO¢Dallowed the
the three sections (identified as black, blue, and red in Figure optimization of the interactions of the Thr and Tyr hydroxyl
4) of the chromosome was implemented in order to unlink these groups with the inhibitor via hydrogen bonds, adding further
three portions. A switch (random number O or 1) has been addedflexibility to the protein.
at the two junctions and virtually allows exchanges between In the present study, six X-ray crystal structures (two
the chromosomes at these points. This approach can be definednonomeric structures and four structures from two dimers) were
as a four-point crossover operation with a floating point on each availablé&-%263and were used to prepare the initial population.
section and two points fixed at the junctions. This implemented Thus, each residue side chain can independently adopt six
method could now potentially lead to the four possible pairs of different conformations, and the same treatment applies to the
children depicted in Figure 4 and to independent treatments of backbone. With these conformation sets, the genetic algorithm
the protein and of the ligand albeit with a single chromosome. protocol now optimizes both the ligand binding mode and the
To further exploit this approach, a crossover rate of 80% was protein binding site conformation. To increase the speed of the
used. This rate allowed single-point crossover or no crossovercomputations, AMBER united-atom was selected instead of all-
operations to be applied to a fraction of the population while atom force fields. With this approach the CPU time required
the other two switching operations were still effective. In these for a single docking run ranged fro# to 20 h on a standard
cases, the parents will simply exchange protein conformation workstation, depending on the flexibility of the inhibitor (up to
and/or ligand conformation. Mutations were also applied to the 33 rotatable torsions for compour8). Developments are in
chromosomes with a user-defined rate of 5%. progress in our laboratory to reduce the time required by the
To accelerate the evolution, intermediate minimization steps whole protocol by at least 1 order of magnitude.
applied to the ligands were added. This approach is similar to To assess the accuracy of this approach, inhibitors cocrys-
the Lamarckian genetic algorithm used in AutoD&gknitial tallized with the enzyme were first studied. The two highly
attempts using intermediate minimization of the side chain flexible inhibitors2 and3 were docked three times. Each run



5888 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 20 Moitessier et al.

led to binding modes and protein conformations highly similar Table 1. Spearman Coefficients for the Ranking of the Training Set

to the crystal structure, indicating a great convergence of this rigid protein flexible
protocol. The rmsd between experimental and modeled structure entry scoring function docking protein docking
of BACE 1 when bound to inhibito2 is 0.18 A, while the six 1 PLP2 0.75 0.64
initial protein structures have rmsd of 0:35.0 A when 2 PLP1 0.68 0.62
compared to each other. Similarly, when inhibigis docked 3 LUDI 0.47 0.37
to BACE 1, the modeled structure of the protein is very close 4 PMF 0.21 0.29
to the experimentally observed structure (rmes0.24 A). The 2 D-Score 0.04 0.61
0 p y ! 24 A). 1he 6 G-Score 0.29 0.20
high convergence observed with such large peptidic inhibitors 7 Chem-Score 0.20 0.17
demonstrates the great potential of the developed induced-fit 8 LigScore2 0.71 0.47
docking method 9 LigScorel 0.41 0.06
. ) )
RankScore Scoring Function.When docking compounds, 1(1) ;g;gg ;:g:g vdw 8?5 8'2‘19
the scoring function should discriminate between conformers 12 force field. ele 0.35 0.41
of a single molecule. When ranking compounds, the function 13 force field 0.5% 0.5A
should discriminate between different molecules. While the 1451 ]fOfce ]f!e:gvvld\{b\v 8-21; g-ig
] H : orce tielq, ele . .
desolvation and entropy contributions of two conformers are 16 RankScore (this work) 0.68 0.80

similar, the same contributions differ significantly between two
molecules. We therefore hypothesized that a poor description _alntermolt_ecula_r inter_action; cutoﬂt_15 A. b Intermolecular _intg\raction
of the_ c_ontr_ibution of_ water and_entrqpy may explain the vari_able méh|fgsn%fgg'g%tle_gﬂfgézgz!y (with atleast one atom with# from
discrimination of active versus inactive compounds with various

scoring function$* 66 A careful investigation of both the
desolvation/solvation phenomena and of the entropy change is
needed in order to develop an accurate scoring function. The
proposed hybrid function (eq 1) uses a LUDI-type empirical
evaluation of the entropy change of the ligand, a LUDI-type
empirical evaluation of the hydrogen bonds, and the three terms
used for the LIE method: an evaluation of the electrostatic and
van der Waals interactions based on a force field, and the
solvation contribution to the free energy of binding. This last
term was required to account for the desolvation of highly

does LIE), the initial state in water and the final state (ligand
bound to the protein) should be considered. Thus, the solvation
difference between the final state (complex solvation energy)
and the initial state (ligand and protein solvation energies) was
computed. Six solvation models, which include methods based
on atomic parameteior on solvent accessible surface area or
employ a more accurate calculation of the polar contribution
using a finite difference of the nonlinear Poissd@pbltzmann
equation, were evaluated. Surprisingly, none of these methods

charged compounds included in the training set. were found to significantly improve the accuracy of the function
(see Results and Discussion). The solvation contribution was
AGyinging= AGy + 0.1Ngor + therefore removed for this work even though preliminary

inh—prot inh—prot assessment of the transferability of this scoring function revealed
Z(scale factor)[(0.28,qy,~ " + 0.033Jge. ™ + that this contribution significantly improves the accuracy when

0.80(Ar,Aa)] (1) looking at other enzymes.
. . Although a number of empirical scoring functions explicitly
Ineq 1, the hydrogen bond term appears virtually twice becausejnciude an entropy penalty for each frozen bond of the ligand,
most of the force fields implicitly consider hydrogen bond only a few account for the protein entropy, which is currently

interactions as electrostatic in nature. However, the docking t0 5ccumed to be constant regardless of the ligafthe force-
I i | 68 X . .
flexible BACE 1 was carried out with the AMBER94%*force field-based scoring functions also lack a term for the entropy

field, which treats electrostatic interactions and hydrogen bonds ., ,«ribution to binding. The intrinsic consideration of the

separately. entropy i e ; ;
. py in some empirical scoring functions (e.g., PLP2 and
i LU?I evall;atei thefr%drogen tgna_s't\lrepdgthlla318\grylng LigScore2) may explain their greater ability in ranking com-
Ineéarly as a function ot the (eg. - deally ) pounds (vide infra). The entropy term due to the freezing of
andp (e.g., G=0-++H, ideally 120) angles and the leng#§ . L .
o0 ’ TS . O torsions used here was similar to the one proposed in the LUDI-
The hydrogen bond contribution in our scoring function was . . - .
. o : type scoring functions. The binding site of BACE 1 features
evaluated using a similar approach. Because the docking proces ive highly flexible residues (Arg128, Arg235, Arg307, Lys224

relied on a force field evaluation of the binding mode, we Lys321). Lysine and arginine side chains have been shown to
thought that including th@ angle (which is not optimized during be the two most flexible side chains in protefAdn addition,

this process) would not be appropriate and therefore used onl - T .
P ) bprop ythe selected training set contains inhibitors of different lengths

the ae angle. LUDI scoring function accounts for the comple- . ) . .
mentarity of shape by evaluating the contact surface, whereasthat are expected to interact with a different number of residues

force fields compute the van der Waals contribution for long- Within the binding site. The mobility of these residues is
range interactioR® Our scoring function takes into account an therefore modulated by the ligands. As the binding enthalpy
intermediate treatment of this contribution by calculating van increases, the mobility of the protein decreases, resulting in a
der Waals interactions only with binding site residues. The greater decrease in entroffyThus, the tighter a ligand is bound,
choice of such short-range interactions was dictated by the the more frozen the side chains will be. This is indeed one of
higher predictiveness of the force field scoring when only the more common explanations of the enthaipptropy
residues in proximity were considered (Table 1, entries 11 and compensation in proteiri.To account for this phenomenon,
14). To the hydrogen bond and van der Waals terms were addedhe interactions (van der Waals, electrostatic, and hydrogen
the Coulombic interactions evaluated by the force field. bonding) with the side chains were scaled. The scaling pattern

When one deals with compounds exhibiting a large range of is related to the flexibility of the side chains. The interactions
lipophilicities, the contribution of desolvation to the binding is with the backbone and the catalytic aspartic acids were not
critical. In addition, to evaluate the whole binding process (as scaled.
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Results and Discussion docked conformations of the training set by known scoring

. . . N functi Il as by RankS .
Induced-Fit Docking. In this work, the enzyme/inhibitor vnctions as well as by Rankscore

comple s coce = chvomosome and oimized b means T 21 S5ng neton e etre g Lot 50
of a genetic algorithm. One part of the chromosome codes the P y gy 9

binding mode of the ligand, and the second part codes the docking StUdY’ PLP2 _and Ll_gScorez appeared_a}s the most
. . ; . accurate scoring functions with Spearman coefficients above
backbone and side chain conformations of the protein. Each . h . -
. . ; : .~ 0.7. A more in-depth study of each scoring function pointed
torsion of the ligand is coded with one gene, and each entire out the importance of hydrogen bonds (as calculated by LUDI)
side chain or entire backbone of the protein is coded with one P yarog y

ene. We considered a library of conformations restricted to and van der Waals interaction (as evaluated by force fields).
gene. Ve Y . X ... These observations were further exploited in the development
the experimentally observed conformations of the protein. Initial

K with flexible side chains led to i istent protei of a new scoring function (see below). It is not clear to us why
work with more Tiexible side chains fed 1o Inconsistent protein -y, LigScorel and LigScore2 performance was so affected by
conformations. Full optimization of the side chain conformations

Id in fact ire the studv of solvated | Althouah the incorporation of the flexibility and why D-Score benefited
wouldiin fact require the study ot Solvated COmpIEXes. ough ¢4 greatly from the flexibility of the protein. Nevertheless, the
in this case study only six starting structures were used, a more

.~ ~performance of the other scoring functions was about the same
complete set of structures can be developed from routine

2 > . .~ with either the rigid or the flexible protein.
molecular dynamics simulations or obtained from NMR studies. . -
. The great performance of AMBER scoring and PLP2 is in
As revealed later, the accuracy of the docking protocol and of . .
. . . good agreement with the work from Charifson et®tHowever,

the developed scoring function was enhanced when the protein

o : i they have also found ChemScore to be accuffaéhe need
flexibility was considered. These results, which stem from the

- . for a highly predictive scoring function prompted us to develop
optlm_lze_d shape complementarity of .bOth partners When_ the a more detailed protocol for ranking the relative binding affinity
protein is allowed to move, are consistent with observations

- of sets of potential inhibitors.
from other groupgt—4° . .
A traini t of 50 highlv di ds exhibiting f RankScore Scoring Function.To date, most of the reported
b raining Ise 0 ighly diverse c?mpo(l;nAs el)'( loiing frorrr]] scoring functions accurately guide the docking of compounds
subnanomolar to no activity was selected. Application of the by identifying the experimentally observed binding mode among

induced-fit docking method led to 50 modeled complexes. A 5'j5r4e number of different poses. However, they perform poorly
close look at these structures reveals that the 50 compounds,pan trying to discriminate between a series of active and

are bound Wi'_[h similar orientations_and confo_rmati_on;. _However, inactive compound64-66.79 A recent comparative study of 11
a simple positioning by analogy with crystallized inhibitors and - g¢4ing functions confirmed this limitatidit.When applied to
minimization would not be able to optimize the binding mode the docking of inhibitors to BACE 1, the empirical scoring
of compounds such 242, 45, and 50 (Table A, Supporting  fynction PLP2 and LigScore2 performed well with a good

Information). The similarity of the binding modes is additional ranking ability while other functions poorly ranked the com-
proof of the high convergence of the method. It is worth pounds.

mentioning that all these docked compounds are highly flexible
and that flexibility has been, to date, an obstacle to accurate

docking methods. In addition, 19 side chains and the backboneon the loss of entropy and on the water effect upon binding as

of the protein were also considered as flexible. presented in Theory and Implementation. A multiple linear
Existing Scoring Functions. Most of the existing scoring  regression was carried out to assign the weights to each
functions attempt to approximate the free energy of binding and contribution, and rmsd values of 2.14 and 1.59 kcal/mol were
rely on additive effect$! To evaluate the predictive power of  obtained for the docking to rigid and flexible proteins, respec-
some available scoring functions, a training set of 50 known tively. The mathematical basis for RankScore is shown in eq
inhibitors (22 charged and 28 neutral inhibitors described in 1. Interestingly, the weights associated with the van der Waals
the Supporting Information), which cover a large cross section (0.260) and electrostatic (0.035) terms are very similar to those
of biological activities (subnanomolar to micromolar and even developed by Reynolds and co-workers (LIE study, 0-204
inactive), was used. This set was selected with an emphasis 0r0.239 and 0.0140.060)16:17 This correlation indicates that the
chemical diversity, although the reported structures are built scoring of the single docked conformation is a good approxima-
around similar scaffolds. The four compounds that were reportedtion of the scoring of a larger sampling of structures obtained
as inactive were arbitrarily attributed the value of 1 000 000 from molecular dynamics (MD) simulations. This also demon-
nM. This allowed us to calculate a binding free energy for these strates that the docking protocol developed in this work is
inactive compounds. Using other arbitrarily assigned values did accurate given the time needed to dock a compound (hours)
not significantly affect the predictive power of the developed compared to the time needed for an LIE study (days). While
scoring function. Compounds in this training set were alterna- this manuscript was in preparation, a similar approach was
tively docked in the rigid and flexible protein and were scored successfully applied by Huang and Caflish to BACE 1 and HIV

With the objective of securing a more discriminating protocol,
we developed our own scoring function (RankScore) focusing

using nine available scoring functions (LUBIPLP173 PLP274 1 proteasé® They combined energy minimization and accurate
PMF,”® LigScore178 LigScore2’®6 D-Score3® G-Score’! and solvation estimation to develop predictive equations (rmsd of
ChemScor€) and two force fields (CFF91 and AMBERY49), about 1.0 kcal/mol). In this case, the weight attributed to the

During the course of our work, Wang et®lreported the use ~ van der Waals contribution (0.2737) to the free energy of
of the Spearman coefficient as a tool for evaluating the ability binding was similar to ours, while the electrostatic was assigned
of the scoring functions to rank the compounds. For the sake a higher weight (0.1795) than in this work. Addition of an
of comparison, this coefficient was also used in this work, and entropy contribution slightly increased the accuracy.

the results correlate well with the data provided by Wang and ~ We next optimized the scaling factors to model the entropy
co-workers. A coefficient of 1 indicates a perfect ranking of cost associated with the side chain freezing. The values were
the compounds, while a coefficient of 0 indicates a random 1.00 for the backbone, 0.80 for flexible side chains, or 0.60 for
ranking of compounds. Table 1 summarizes the ranking of the Arg and Lys side chains. This is an indication of the role of the
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entropy associated with the side chain mobility. This may also
partly account for the desolvation of the charged residues.

The weights attributed by linear regression analysis to each
term of RankScore can be related to experimental vaRigsr
instance, an energy of 0.80 kcal/mol was attributed to an ideal
hydrogen bond. This value is in good agreement with the
reported experimental values (1.1 kcal/nf8l)Similarly, a
contribution of 2 kcal/mol for a salt bridge is calculated by the
developed function and found to be in good agreement with
the literature (25 kcal/mol)?® The freezing of a bond upon
binding was found to increase the Gibbs energy by 0.14 kcal/
mol, a value that is lower than that of LUDI and AutoDock
scoring functions (0.33 and 0.31 kcal/mol, respectively). The
remaining constantNGo) represents the rigid-body entropy loss
associated with the rotational and translational restrictions
imposed on the bound ligand and enzyme desolvation. This latter
contribution can be considered as roughly constant from one

system to another. t . ; !
The use of scaling factors to model the entropy cost greatly ;8: ttneetliél\r/lgllgesset' Dotted lines delineate errors of 1 order of magnitude
i .

enhanced the accuracy of the RankScore scoring function. Thus,

the developed protocol includes the protein flexibility and the and32 (pred, 15¢M: obsd, 15 00Q«M) listed in the Supporting

evaluation of thPT entropy loss upon bindin_g to an inhik_)itor. nformation. Visual inspection of docked compows@irevealed
When these scaling factors were removed, linear regression le hat the phenyl ring was not well tolerated (not flat) by the

to weights With. no phy.sica.\I meanings; thg weight attributed to enzyme. The lack of a term evaluating the ligand strain in the
the electrostatic contribution was negaﬂve. An rmsd of 1.74 developed scoring function may explain this failure. Compounds
kca_lllmol was calculated_when no scaling was emp'oye‘?" ar_1d 812 and 27 feature nitrogen-containing heterocycles. The pro-
weight of zero was assigned to the electrostatic contribution. 1 ,4ii0n state of these groups is strongly influenced by the local
These last results validated our assumption that the entropy IOSSpKa of the binding site, and local proton exchange between the
of the macromolecule should be appropriately estimated. This protein and the inhibifor may occur upon binding. However, a

also confirmed that the poor ability of the available scoring standard docking procedure cannot account for such a phenom-
functions to rank compounds may be related to the oversim- enon.
plification of this term. Ranking of a Validation Set. An ideal computational tool

A low weight was initially attributed to the solvation in virtual screening would extract the most active compounds
contribution; however, the role it played was not significant. from a large and diverse library, and the best protocol would
This last result is quite unexpected when considering the large assign high ranking to these active compounds. To evaluate the
variety of polar and nonpolar compounds in the training set. A performance of the developed RankScore protocol, a validation
recent study on BACE 1 from Reynolds and co-workéfed set of 80 peptidomimetics and pseudopeptides developed in our
to a similar conclusion. In the meantime, Brooks and co- |ahoratory was selecté@8283Most of these 80 compounds are
workerg® have investigated the role of the generalized Born sjmilar to the compounds found in the training set, although
and the Poisson continuum models in combination with a force they feature nonpeptidic moieties such as Cydopen@@ae_
field (CHARMm). This force-field-based scoring showed ac- ejghth of the selected library exhibit §gvalues below 500 nM
curacy close to that obtained with available scoring functions. (Figure 6). Thus, the selected compounds were docked, scored,
In the present Work, Scaling down the electrostatic and van derand ranked using RankScore. For the sake of Comparison’ the
Waals contributions and Scaling down the interactions with same docked structures were ranked with PLP2 and LigScoreZ,
lysine and arginine side chains seem to account for the which were found to be the two best scoring functions
desolvation/solvation process. (Spearman coefficients for the training set of 6475 and

As a result, the Spearman coefficient for RankScore (Table 0.47-0.71, respectively). Once the molecules were ranked, the
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Figure 5. Predicted binding energies vs observed binding energies

2, entry 16) is now higher than those computed for other
available scoring functions. The quality of the final scoring
function was illustrated by an rmsd of 1.59 kcal/mol andran
value of 0.624 (Figure 5). Removing the three major outliers
(AG(obsd)— AG(pred)> 3 kcal/mol) led to an rmsd of 1.19
kcal/mol and an? value of 0.789. The CPU-intensive but more
accurate LIE procedure as applied by Reynolds and co-workers

performances of the different scoring functions were compared.
Unfortunately, the available biological data were not sufficient
to compute a correlation factor. These data includegv@lues
only for the most active compounds and not for compounds
with inhibitory activity lower than 50% at 10M. In Figure 6,

we compare histograms representing the composition of the
initial library (random ranking) to ranked lists with RankScore,

led to an optimized rmsd of 1.10 kcal/mol (12 compounds) and PLP2, and LigScore2. It is clear that the top of the ranking lists
an optimized rmsd of 0.87 kcal/mol when the two charged for RankScore and PLP2 is enriched in actives relative to the
compounds were removed. The more similar LIE approach usedrandom ranking list. It also appears that LigScore2 poorly
by Huang and Caflish demonstrated a better rmsd of 1.0 kcal/ discriminates actives and inactives within this validation set. A
mol 8 However, the large training set used in the present work focused library extracted from a LigScore2 ranking list would

gathers compounds from different sources and SAR data werehave nearly the same composition as a random library. This
collected using different biological assay conditions. The failure is striking when considering the good prediction of

theoretical error (rmsd< 2 kcal/mol) is therefore believed to
be within a reasonable range. The three outliersl&réored,
61 uM; obsd, 0.04uM), 27 (pred, 0.9uM; obsd, 1400um),

LigScore2 for the training set.
Several reasons can explain the weaker prediction of Rank-
Score for two of the good binders in the validation set. First,
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N o & Chart 1. Flow Chart of the Protocol Used for the Validation of
Q@(\b" Q‘(b@fﬂ Oc?cp 0 & the Developed Docking/Scoring Method
i Virtual Library Designed by Medicinal Chemists
High Ranking 80 Compounds
| Top 15 ‘ Flexible Docking | ‘ Synthesis of 80 Compounds ‘
‘ RankScore Scoring |
N G, < 500 nM l
B 500 M < 1< < 10,000 M ‘ Ranking |
. s = 10,000 ni l l l
[Tops | ‘Topm‘ [Toms‘
R A }
‘ 5 Actives ‘ | 6 Actives ‘ | 9 Actives | | 11 Actives ‘
an extended version of this method that accounts for protein fit
upon binding was developed and showed improved efficiency.
Low Ranki The method is based on a genetic algorithm where chromosomes
F ow Ranking code the entire complex. Genes code the ligand conformation,
\ while other genes code the protein conformation. The modeling
@ () © @ of both the side chains and the main chain conformations while

Figure 6. Distribution of (a) randomly generated library, (b) library  nhibitors are being docked is unique and easy to implement.
scored/ranked with RankScore, (c) library scored/ranked with Lig- The docking data clearly indicate that the oriented docking
Score2, (d) library scored/ranked with PLP2. approach effectively accounts for the large flexibility of the
inhibitors (up to 33 rotatable bonds for compou)dand for
adjustments in the protein structure. The docking method has
also been found to be highly convergent (three runs with the
most flexible inhibitors led to similar binding modes and scores)
although costly in time.

A force-field-based scoring function for BACE 1 (Rank-
Score), which accounts for the protein entropy loss, ligand
desolvation, and complex solvation, was next developed and
demonstrated a great ability to discriminate between active and
inactive compounds. Accounting for the entropy loss of the
protein using a scaling pattern applying to flexible binding site

the docking was performed in a vacuum, while water molecules
can have an active role to play in the binding. Second, the
scoring might have been computed on poorly docked com-
pounds. Third, the initial set of six structures of the protein may
not cover the conformational space properly. This last issue can
easily be addressed using molecular dynamics simulations or
NMR structures. An additional experimental error can be
attributed to the use of Kgvalues whereas the binding energies
predicted for the training set were correlatecKtovalues. It is
also worth mentioning that the RankScore scoring function was

developed for this particular enzyme and that it was developed side chains significantly enhanced the accuracy of the function.

from docked and not experimentally observed structures. The predictive power of RankScore was compared to that of

From a practical point of view, if one had screened the | joscore2 and PLP2. In fact, RankScore was able to discrimi-
validation set prior to synthesis and biological assays and had 516 compounds with similar structures but different biological

synthesized only the top 15 molecules, one would have made 8,yities, while the ranking of this validation set with PLP2
(PLP2) or 9 (RankScore) of the 11 highly active compounds a5 |ess accurate. The ability to rank docked structures also

(ICso below 500 nM) (Chart 1). Overall, the timeline for the 4 onstrates the appropriate binding modes proposed by the
discovery of new active entities would have been significantly docking procedure.

reduced. In addition, RankScore ranked the 11 highly active
structures in the top 33, while two compounds ranked 48 and
55 with PLP2. In Chart 1, we show the protocol used and the
number of actives predicted. When a desolvation/solvation term
was included, the 11 highly active structures were found in the
top 27.

The capacity of the approach described herein to discriminate
actives and inactives has great potential for the future design
of peptidic and pseudopeptidic BACE 1 inhibitors. The exten-
sion of this protocol to other enzymes and the evaluation of the
transferability of RankScore are underway.

Methods

] . General. The developed protocol was fully interfaced within
A docking method was first developed that properly docked Insightll from Accelrys Inc using BCL code, awk, and perl
the highly flexible inhibitors contained in the training set. Next, scripts® Standard force field (AMBER94) atom partial charges

Conclusion
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were assigned to the protein, while the ligand charges were
computed using semiempirical calculations with MNDO. Missing

Moitessier et al.
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Tripos Inc® This protocol includes an additional minimization
using the Tripos force field.

Starting Enzyme Structure. The X-ray structure of inhibitor/
BACE 1 complexes were retrieved from the Brookhaven Protein
Data Bank (PDB codes 1FKN, 1M4H, 1YM4) and from a patent

and used as a starting point. The hydrogen atoms were added, the

energy was minimized, and the result was visually inspected. The
inhibitors and water molecules were removed from the obtained

complexes. To reduce the computational time, the enzyme structures

were next truncated for the docking study. Truncation was achieved
by keeping residues with at least one atom within 15 A from the
OMQ99-2 structure in the relaxed complex. Geometric considerations

led us to protonate Asp32 and deprotonate Asp128. The protonation

state of the enzyme has been investigated by different groups.
However, the different studies led to opposite conclusi®f3?3

Genetic Algorithm-Based Docking Method.The algorithm was
written using BTCL code as implemented under Discover 3.0 and
is as follows? (1) Create the initial population (300 individuals in
this work) by randomly rotating all the rotatable bonds of the
inhibitor with the hydroxyl group positioned near the two catalytic
aspartates followed by relaxation of the inhibitors by quick
minimization; keep those with potential energy of less than a user-
defined value (3000 kcal/mol). The initial population was con-
structed using six X-ray structures for the protein. (2) Begin a user-
defined number of genetic operations (population usually converges
within 100—200 generations). (2.1) Select two parents within the
300 individuals. (2.2) Produce two children by the developed two-
point crossover (one point for the ligand and one point for the
protein). (2.3) Apply mutation with a user-defined rate (0.05 in
this work). (2.4) In a user-defined fraction of the population (0.25
in this study), optimize the solution (local search) by a user-defined
number of steps of conjugate gradient energy minimization (250
in this work) with a convergence criterion of 0.001 kcal/mol. During
this minimization stage, the Thr, Ser, and Tyr hydroxyl hydrogens
are free to move while the rest of the protein is fixed. (2.5) Replace
in a steady-state mode the least fit parent if the child’s fit is better
(potential energy is lower). (2.6) Reiterate the process until
convergence is obtained.

The docking fitness function was a simple force field energy
evaluation with a scaled (0.5) Coulombic term and a distance-
dependent dielectric constaat= 4r) to account for the desolvation
and the solvent shielding, respectively. This electrostatic scaling
was indeed found to significantly improve the efficiency of the
docking method. The following side chains were considered as
flexible: GIn12, Leu30, Asp32, Tyr71, Thr72, GIn73, Phel08,
lle110, lle118, lle126, Arg128, Tyrl98, Lys224, Asp228, Thr231,
Thr232, Arg235, Arg307, Lys321. Each of these side chains was

coded as a gene, while the rest of the protein (backbone and other

side chains) was coded in a single gene.

Scoring Function. The resulting docked structures were further
optimized by conjugate gradient energy minimization with a
convergence criterion of 0.001 kcal/mol and scored using the
RankScore scoring function. This function includes (1) the van der
Waals and Coulombic interactions of the complex measured using
AMBER94, (2) the hydrogen bond profile of the complex using

scripts that read the coordinate files, (3) an extra term that can also

be included, which is the solvation free energy of binding calculated
using DELPHI module (Insight Il Users’ Guide) by computation
of the complex and the ligand solvation energies. AWK and perl
scripts combine all these values into a final scre.
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